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We describe a numerical procedure for the construction of quadrature formulae suitable
for the efficient discretization of boundary integral equations over very general curve seg-
ments. While the procedure has applications to the solution of boundary value problems
on a wide class of complicated domains, we concentrate in this paper on a particularly sim-
ple case: the rapid solution of boundary value problems for Laplace’s equation on two-
dimensional polygonal domains. We view this work as the first step toward the efficient
solution of boundary value problems on very general singular domains in both two and
three dimensions. The performance of the method is illustrated with several numerical
examples.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

One of the standard approaches to the numerical solution of boundary value problems for elliptic partial differential
equations calls for converting them into integral equations, discretizing the integral equations via the Nyström method,
and inverting the resulting discrete systems using either a fast direct solver or with the combination of an iterative method
and the appropriate fast multipole method. In the case of a planar domain X with boundary @X, the Nyström discretization of
the integral equations, which take the form
krðxÞ þ
Z
@X

Kðx; yÞrðyÞdy ¼ uðxÞ ð1:1Þ
is typically effected by representing the unknown functions as piecewise polynomials. That is, it is assumed that the desired
solution r can be represented locally by polynomials and the integral
Z

@X
Kðx; yÞrðyÞdy
is approximated using quadratures for functions of the form Kðx; yÞPðyÞ, with P a polynomial of a given order. The efficiency
of the resulting discretization hinges on both the suitability of the representation of solutions by piecewise polynomials and
the number of nodes in the quadrature formulae.

On smooth domains, the representation of solutions r by piecewise polynomials is generally adequate. However, for non-
smooth domains X, solutions of the integral equations can exhibit singular behaviors, making their representation via poly-
nomials extremely inefficient. An obvious remedy is to devise improved representations for functions satisfying an integral
. All rights reserved.
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equation of the form (1.1) near a singular point on the boundary curve @X and to construct the necessary quadratures for
Nyström discretization. Analytical estimates of the singularities of solutions of certain boundary integral equations near a
corner point are available in some cases (see, for instance, [10,11]) and could be used to develop efficient local representa-
tions. The disadvantages of such an approach, however, are clear: the need for complicated analytical estimates of the sin-
gularities of solutions, the fact that individual cases must be treated separately, and the impossibility of treating cases in
which estimates are lacking.

In this paper, we describe a numerical procedure for the construction of an orthonormal basis of functions spanning the
space of restrictions of functions r satisfying a boundary integral equation
krðxÞ þ
Z

C
Kðx; yÞrðyÞdy ¼ uðxÞ ð1:2Þ
on a contour C to a small curve segment C0 2 C. The resulting basis can be used to form quadrature rules for the Nyström
discretization of the boundary integral equation (1.2) over C0 with the number of quadratures nodes depending only on the
rank of the basis. In other words, given a particular curve segment C0, it is possible to construct numerically an efficient ‘‘pur-
pose-made” quadrature for the discretization of a boundary integral equation over C0. The principal step of the procedure
consists of computing solutions of the restriction of the integral equation (1.2) to the curve segment C0 for a small collection
of right-hand sides. In effect, the problem of efficiently discretizing an integral equation over a complex curve segment is
reduced to the problem of solving the integral equation locally on that curve segment.

This procedure allows for a divide-and-conquer approach to the solution of boundary integral equations on complicated
domains. For instance, given a domain X with boundary @X containing corner points x1; . . . ; xn, the procedure of this paper
can be used to construct a collection of n efficient quadrature formulae, one for the discretization of @X near each corner
point xn. The resulting quadrature formulae can then be used to produce what amounts to a compressed representation
of the integral equation over the entire contour @X. This has obvious applications to parallelization and in environments
where the cost of inverting an integral equation that has been discretized as an n� n linear system is asymptotically greater
than OðnÞ. It is also a viable approach to the solution of a problem too large to fit in available memory. This last application is
expected to be important in the case of boundary value problems on complicated surfaces in three dimensions.

A particularly effective application of this procedure, and the focus of this paper, is the computation of collections of spe-
cialized quadrature rules for the efficient discretization of certain classes of pathological domains. In this paper, we describe
the construction of quadrature formulae for efficiently discretizing Laplace boundary integral equations over two-dimen-
sional polygonal domains. Once such quadrature rules have been constructed they can be used repeatedly to efficiently dis-
cretize Laplace boundary integral equations on such domains without additional computations. We refer to such a collection of
quadrature formulae as a set of ‘‘universal quadratures” for polygonal domains. This example have been chosen by the
authors as the most obvious and straightforward application; it is expected that the construction of universal quadratures
will be possible in the case of much more general nonsmooth domains.

The approach of this paper is in marked contrast to most previously published algorithms, which involve the use of dense
meshes of discretization nodes near corner points (see [16,5,2] for representative examples). Not only does this lead to large
discrete systems of equations on domains with many corners, but the presence of densely sampled regions of a boundary
curve interferes with the efficient operation of fast solvers. The recent paper [13] of Helsing and Ojala is notable in that it
overcomes many of the drawbacks associated with using dense meshes of discretization nodes near corner points. In partic-
ular, it introduces a technique dubbed ‘‘recursive compressed inverse preconditioning” whereby a boundary integral equa-
tion is multiplied on the right by a preconditioner which smoothes singular solutions near corner points, thus rendering
them more amenable to representation via polynomials. The hierarchical structure of the preconditioner is exploited in order
to apply its inverse rapidly. Both the approach of Helsing–Ojala and the algorithm of this paper involve compressing sub-
blocks of a discretized integral operator, but the algorithm of this paper differs in several key ways. Our approach involves
a much simpler formalism which, in contrast to the recursive compressed inverse preconditioning scheme of [13], extends
readily to the case of surfaces in three dimensions. Indeed, since we reduce the problem of constructing efficient quadrature
rules for the discretization of a boundary integral equation to the problem of locally solving that integral equation, in most
cases no additional machinery is required in order to apply our algorithm – whatever fast solver is already being used to
invert the boundary integral equation can be used in the construction of quadrature rules. Finally, our approach has the
advantage that for classes of domains for which universal quadratures can be constructed, essentially all complexity arising
from the pathological behavior of the boundary is eliminated in the precomputation stage. That is, compression in that case
is done a priori at the time of the quadrature precomputation instead of on-the-fly for a particular problem as in [13].

This paper is organized as follows. In Section 2, we discuss the preliminary mathematical and numerical methods which
form the backbone of our approach. In Section 3, we review boundary integral methods for the solution of Laplace’s equation
on Lipschitz domains. In Section 4, we describe the discretization of those integral equations. Section 5 introduces the pri-
mary analytical tool of this paper, a procedure for the construction of bases spanning the set of restrictions of solutions of an
integral equation to a small curve segment. In Section 6, a numerical algorithm for the construction of quadratures for the
discretization of boundary integral equations on polygonal domains is described. In Section 7 the implementation of the
algorithm is discussed and numerical examples are given. Finally, in Section 8, we discuss possible extensions and general-
izations of the present work.
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2. Preliminaries

2.1. Interpolation on spaces of bounded functions

The following result, which ensures that a numerically stable interpolation scheme exists for any collection of bounded
functions, appears as Theorem 2.2 in [20].

Theorem 2.1. Suppose that S is an arbitrary set, n is a positive integer, f1; . . . ; fn are bounded complex-valued functions on S, and �
is a positive real number such that
� 6 1:
Then, there exist n points x1; . . . ; xn in S and n functions g1; . . . ; gn on S such that
jgkðxÞj 6 1þ � ð2:1Þ
for all x in S and k ¼ 1;2; . . . ;n, and
f ðxÞ ¼
Xn

k¼1

f ðxkÞgkðxÞ
for all x in S and any function f defined on S via the formula
f ðxÞ ¼
Xn

k¼1

ckfkðxÞ:
Moreover, if the set S is finite, then g1; . . . ; gn can be chosen so that (2.1) holds with � ¼ 0.

Remark 2.1. The proof of Theorem 2.1 in [20] is constructive, but the procedure is computationally infeasible. Typically,
however, the pivoted Gram–Schmidt procedure with reorthogonalization can be used in practice to identify a set of stable
interpolation nodes for a finite collection of bounded functions on a finite set S. See [6] for a detailed discussion of interpo-
lation and quadrature for very general classes of functions.
2.2. Generalized Chebyshev quadratures

Although Chebyshev quadratures are classical Gaussian quadratures on the interval [�1,1] with respect to the weight
function xðxÞ ¼ ð1� x2Þ�1=2, in practice, Chebyshev nodes and weights are often used to integrate functions on [�1,1] with
respect to the weight function xðxÞ ¼ 1. This practice leads to a 2n-point quadrature which integrates exactly polynomials of
order 2n� 1, and motivates the following definition:

Definition 2.1. A quadrature formula will be referred to as a Chebyshev quadrature for a set of 2n linearly independent
functions /1; . . . ;/2n : ½a; b� ! R if it consists of 2n nodes and 2n weights and integrates exactly the functions /i, for all i ¼
1; . . . ;2n. The weights and nodes of a Chebyshev quadrature will be referred to as Chebyshev weights and nodes, respectively.

The following lemma, which asserts that if a numerically stable solution for a system of linear equations exists then there
also exists a numerically stable basic solution for that system of equations, is an immediate consequence of Theorem 2.1.

Lemma 2.1. If
Ax ¼ b; ð2:2Þ
where A is an m� n matrix of rank m, then there exists a vector ~x 2 Rn with no more then m nonzero entries such that
A~x ¼ b
and
k~xk1 6 mkxk1:
It follows from Lemma 2.1, that a numerically stable Chebyshev quadrature for a finite sequence of linearly independent
functions u1; . . . ;uk defined on an interval ½a; b� exists provided there exists a stable quadrature formula
x1; x2; . . . ; xn;w1;w1; . . . ;wn integrating the functions. The condition that the pre-existing quadrature rule integrates the func-
tions u1; . . . ;uk can be expressed by the matrix equation
u1ðx1Þ u1ðx2Þ � � � u1ðxnÞ
u2ðx1Þ u2ðx2Þ � � � u2ðxnÞ

..

.
� � � ..

.

ukðx1Þ ukðx2Þ � � � ukðxnÞ

0
BBBB@

1
CCCCA

w1

w2

..

.

wn

0
BBB@

1
CCCA ¼

r1

r2

..

.

rk

0
BBB@

1
CCCA; ð2:3Þ



2510 J. Bremer, V. Rokhlin / Journal of Computational Physics 229 (2010) 2507–2525
where ri; i ¼ 1; . . . ; k, is defined by
ri ¼
Z b

a
uiðxÞdx:
Then, by Lemma 2.1, there exist i1; . . . ; in and ~w1; . . . ~wk such that
u1ðxi1 Þ u1ðxi2 Þ � � � u1ðxin Þ

u2ðxi1 Þ u2ðxi2 Þ � � � u2ðxin Þ

..

.
� � � ..

.

ukðxi1 Þ ukðxi2 Þ � � � ukðxin Þ

0
BBBBBBB@

1
CCCCCCCA

~w1

~w2

..

.

~wk

0

..

.

0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

¼

r1

r2

..

.

rk

0
BBBBBBB@

1
CCCCCCCA

ð2:4Þ
and
Xk

j¼1

j ~wjj 6 k
Xn

j¼1

jwjj: ð2:5Þ
The points xi1 ; . . . ; xik are, of course, the nodes of a generalized Chebyshev quadrature for the functions u1; . . . ;uk and the
~w1; . . . ; ~wk are the corresponding weights.

The numerical computation of such a solution to the matrix equation (2.3) can be problematic; for instance, when
ujðxÞ ¼ xj�1; j ¼ 1; . . . ; k, the matrix appearing on the left-hand side of (2.3) is a Vandermonde matrix. However, there is a nat-
ural right preconditioner which usually makes the problem tractable. When the uj are orthonormal and the original quad-
rature rule has been chosen so as to integrate products of the uj (conditions which can usually be satisfied in practice), the
rows of the matrix
eU ¼
u1ðx1Þ

ffiffiffiffiffiffi
w1
p

u1ðx2Þ
ffiffiffiffiffiffi
w2
p � � � u1ðxnÞ

ffiffiffiffiffiffi
wn
p

u2ðx1Þ
ffiffiffiffiffiffi
w1
p

u2ðx2Þ
ffiffiffiffiffiffi
w2
p � � � u2ðxnÞ

ffiffiffiffiffiffi
wn
p

..

.
� � � ..

.

ukðx1Þ
ffiffiffiffiffiffi
w1
p

ukðx2Þ
ffiffiffiffiffiffi
w2
p � � � ukðxnÞ

ffiffiffiffiffiffi
wn
p

0
BBBBBB@

1
CCCCCCA

ð2:6Þ
are orthonormal and the modified matrix equation
eUx ¼ b ð2:7Þ
has greatly enhanced numerical stability.

Remark 2.2. A numerically stable basic solution to Eq. (2.7) can be obtained in practice by forming a rank-revealing QR
decomposition of the matrix eU via the pivoted Gram–Schmidt algorithm with reorthogonalization. In the rare cases
where that algorithm is unstable (and the authors have never encountered such a situation in practice), more recent
algorithms for the construction of rank-revealing QR decompositions which are guaranteed to be stable could be
substituted (see, for instance, [12]). See the monograph [3] for a detailed discussion of the numerical solution of
underdetermined systems of linear equations, including the computation of basic solutions via the pivoted Gram–
Schmidt algorithm.
2.3. Generalized Gaussian quadratures

In [18], the notion of a Gaussian quadrature was generalized as follows:

Definition 2.2. A quadrature formula will be referred to as Gaussian with respect to a set of 2n linearly independent
functions /1; . . . ;/2n : ½a; b� ! R if it consists of n nodes and n weights and integrates exactly the functions /i, for all
i ¼ 1; . . . ;2n. The weights and nodes of a Gaussian quadrature will be referred to as Gaussian weights and nodes,
respectively.

Several algorithms for the construction of generalized Gaussian quadratures have been proposed (see [18,6,23,4]), all of
which are based on the observation that the nodes x1; . . . ; xm and weights w1; . . . ;wm of a quadrature rule exact for the func-
tions f1; . . . ; fn satisfy the (generally underdetermined) system of nonlinear equations
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G1ðx1; . . . ; xm;w1; . . . ;wmÞ ¼ b1;

G2ðx1; . . . ; xm;w1; . . . ;wmÞ ¼ b2;

..

.

Gnðx1; . . . ; xm;w1; . . . ;wmÞ ¼ bn;
where
Giðx1; . . . ; xm;w1; . . . ;wmÞ ¼
Xm

j¼1

fiðxjÞwj
and
bi ¼
Z b

a
fiðxÞdx:
The various methods of [18,6,23,4] then amount to different numerical procedures for the determination of a sparse, sta-
ble solution to this underdetermined nonlinear system of equations. The most recent of these methods, [4], operates by start-
ing from a generalized Chebyshev rule and reducing it point-by-point; that is, at each iteration, one point is deleted from an
ðnþ 1Þ-point quadrature formula exact for the collection of functions under consideration and the resulting n-point formula
is refined using Newton iterations until it is sufficiently accurate. This procedure has been used to construct stable quadr-
atures for very general classes of functions.

2.4. Compression of sequences of functions

In this subsection, we discuss an analog of the singular value decomposition for sequences of functions. The following
result, which can be found in [6], generalizes the SVD to this setting.

Theorem 2.2. Suppose that the functions /1; . . . ;/m : ½a; b� ! R are square integrable. Then there exist an integer k, a finite
orthonormal sequence of functions u1; . . . ;uk : ½a; b� ! R, an m� k matrix V ¼ ðv ijÞ with orthonormal columns, and a sequence
s1 P s2 P � � �P sk > 0 2 R such that
/jðxÞ ¼
Xk

i¼1

uiðxÞsiv ji ð2:8Þ
for all x 2 ½a; b� and all j ¼ 1; . . . ;m. The sequence s1; . . . ; sk is uniquely determined by k.

By analogy with the finite-dimensional case, we will refer to this decomposition as the SVD of a finite sequence of func-
tions. We call the functions ui the singular functions, the columns of V the singular vectors, and the values si the singular
values. The SVD is clearly a useful tool for the compression of the sequence /1; . . . ;/m: if we let ~/jðxÞ denote the p-term
truncation
~/jðxÞ ¼
Xp

i¼1

uiðxÞsiv ji ð2:9Þ
of the sum (2.8), then
k~/jðxÞ � /jðxÞk2 6 spþ1 ð2:10Þ
for j ¼ 1; . . . ;m.
In order to form the singular values and vectors of a sequence /1; . . . ;/m of functions numerically, a quadrature formula

x1; . . . ; xn;w1; . . . ;wn integrating products of the /i is required. In particular, given such a quadrature it is clear the singular
values of the matrix n�m matrix A with entries
Aij ¼ /jðxiÞ
ffiffiffiffiffiffi
wi
p

are the singular values of the functions /1;/2; . . . ;/m. Moreover, the jth singular vector of A consists of the values of the jth
singular function at the n quadrature nodes x1; . . . ; xn scaled by the square roots

ffiffiffiffiffiffi
w1
p

; . . . ;
ffiffiffiffiffiffi
wn
p

of the quadrature weights. See
[23] for a more detailed discussion of the numerical computation of the SVD of a collection of functions.

3. Boundary integral formulations

In this section, we briefly outline the solution of certain boundary value problems for Laplace’s equation via integral equa-
tion methods. Thorough treatments of the classical theory can be found in [17,21,9,14]. Extension of the classical theory to
the case of Lipschitz domains is discussed in [15,22,7].
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3.1. Boundary integral equations on smooth domains

In this section, X will denote a bounded, simply-connected domain in the plane whose boundary @X is twice continuously
differentiable, Xc will be the open region in the plane exterior to X, and dS will denote integration with respect to the arc-
length measure on @X.

The interior Dirichlet problem calls for the determination of a function harmonic in X with prescribed values on the bound-
ary curve @X. That is, given a continuous function f : @X! R, we seek u : X! R satisfying
DuðxÞ ¼ 0 for x 2 X;

lim
x!p
x2X

uðxÞ ¼ f ðpÞ for p 2 @X: ð3:1Þ
As is well known, the unique solution can represented in the form of a potential arising from a dipole distribution r on
@X:
uðxÞ ¼ 1
2p

Z
@X

rðyÞ @
@my

log jx� yjdSðyÞ; ð3:2Þ
where @
@my

denotes the outward normal derivative taken in the variable y. In particular, the function uðxÞ defined by (3.2) is
harmonic in X and the limit of uðxÞ as x approaches the point p 2 @X from the interior of X is given by the jump relation
lim
x!p
x2X

uðxÞ ¼ 1
2
rðpÞ þ 1

2p

Z
@X

rðyÞ @
@my

log jp� yjdSðyÞ: ð3:3Þ
It follows that if rðyÞ satisfies the integral equation
1
2
rðpÞ þ 1

2p

Z
@X

rðyÞ @
@my

log jp� yjdSðyÞ ¼ f ðpÞ ð3:4Þ
for all p 2 @X, then the function uðxÞ given by (3.2) is a solution to problem (3.1).
Other boundary value problems for Laplace’s equation can be solved in a similar fashion. In this paper, we will be con-

cerned with the interior Dirichlet, exterior Dirichlet, exterior Neumann, and interior Neumann problems. The integral
equation
�1
2
rðpÞ þ 1

2p

Z
@X

rðyÞ @
@my

log jp� yjdSðyÞ ¼ f ðpÞ ð3:5Þ
arises from the exterior Dirichlet problem (see [17]), the equation
�1
2
rðpÞ þ 1

2p

Z
@X

rðyÞ @

@my
log jx� yj þ 1

� �
dSðyÞ ¼ f ðpÞ: ð3:6Þ
arises from the exterior Neumann problem, and the integral equation
�1
2
rðpÞ þ 1

2p

Z
@X

rðyÞ @
@mp

log jp� yjdSðyÞ � rðp�Þ ¼ f ðpÞ ð3:7Þ
is a typical mechanism for the solution of the interior Neumann problem (see [1]). Note that p� in Eq. (3.7) refers to an arbi-
trarily chosen point on the boundary @X.

3.2. Boundary integral equations on Lipschitz domains

It is a well-known classical result that when the boundary curve @X is twice continuously differentiable, the integral
operator
TrðxÞ ¼
Z

Kðx; yÞrðyÞdSðyÞ; ð3:8Þ
where K is one of the potential theoretic kernels appearing in the preceding section, is compact as an operator
L2ð@XÞ ! L2ð@XÞ. More recently, it was established in [8] that this is the case so long as the boundary curve is continuously
differentiable. The invertibility of the various operators of the form �1=2I þ T appearing in the preceding section then fol-
lows from the Fredholm theory; in particular, the operators arising from Dirichlet boundary conditions are invertible as
operators L2ð@XÞ ! L2ð@XÞ while the operators corresponding to Neumann conditions are isomorphisms L2

0ð@XÞ ! L2
0ð@XÞ,

where L2
0ð@XÞ is the space of square integrable functions of zero mean on @X. It is a relatively recent and deep result in anal-

ysis that the boundary operators �1=2I þ T are still invertible in the case of domains X whose boundaries @X are merely
Lipschitz. In that case, the integral operator (3.8) is no longer compact and the proof of the invertibility of �1=2I þ T was
first established in [22].
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We assume now that our boundary curve @X is Lipschitz. Then the integral equations of the preceding section no longer
hold everywhere, but rather only at points c 2 @X at which the boundary curve is differentiable. Of course, as is well known,
if @X is Lipschitz then it is differentiable almost everywhere (for instance, a Lipschitz function is absolutely continuous), and
so in this case the integral equations of the preceding section hold almost everywhere.

Corrected formulas which hold everywhere can be derived in particularly simply situations, for instance on polygonal do-
mains (see, for example, [17]), but such estimates are unnecessary. We are never interested in the pointwise behavior of a
solution r of one of our boundary integral equations, but rather in the distributional behavior of a solution; i.e., the only ob-
jects of interest to us are layer potentials of the form
Z

@X
Kðx; yÞrðyÞdSðyÞ:
That we are unable to resolve a charge distribution r pointwise is of no concern so long as the layer potential is unaffected –
which is, of course, the case assuming r satisfies the correct boundary integral equation almost everywhere.
4. Discretization of integral equations

4.1. The Nyström method

The Nyström method is a well-known technique for the discretization of integral equations. It operates by replacing inte-
grals with appropriately chosen quadrature formulae; i.e., via approximations of the form
Z
Kðx; yÞrðyÞdSðyÞ �

XM

l¼1

Kðx; ylÞrðylÞwl: ð4:1Þ
Here we describe a very general Nyström framework for the discretization of the integral equations of Section 3. Recall
that they are of the form
krðxÞ þ
Z

C
Kðx; yÞrðyÞdSðyÞ ¼ uðxÞ; ð4:2Þ
where C is a closed curve in the plane, k is a real constant, and the kernel Kðx; yÞ is continuous except at points y where the
boundary curve fails to be differentiable.

We begin by assuming that C is divided into M curve segments, C1; . . . ;CM , not necessarily of equal length. For each curve
segment Cj we will require the following:

(1) An orthonormal collection of k basis functions f/ig in L2ðCjÞ.
(2) A linear interpolation scheme for the basis functions /1; . . . ;/k with nodes k1; . . . ; kk.
(3) A ‘‘far” quadrature formula of the form
Z

Cj

Kðx; yÞrðyÞdSðyÞ �
XM

l¼1

Kðx; ylÞrðylÞwl

exact whenever r is in the span of the basis functions f/ig and x is outside of Cj.

(4) A set of k ‘‘diagonal” quadrature formulas of the form
Z

Cj

Kðx; yÞrðyÞdSðyÞ �
XM

l¼1

Kðx; ylÞrðylÞwl;

the jth of which is exact for r is in the span of the f/ig and x ¼ kj.
The method proceeds under the assumption that the restriction of the unknown solution r in Eq. (4.2) to the curve seg-
ment Cj can be represented as linear combinations of the basis functions f/ig for Cj. Let Cj and Ci be two curve segments, not
necessarily distinct. We will denote by /1; . . . ;/n the basis functions on the curve segment Cj, by s1; . . . ; sn the interpolation
nodes on the curve segment Cj, and by t1; . . . ; tm the interpolation nodes on the curve segment Ci. The integral equation
TijrðxÞ ¼ uðxÞ; ð4:3Þ
where Tij is the integral operator mapping functions on Cj to functions on Ci defined by
TijrðxÞ ¼
Z

Cj

Kðx; yÞrðyÞdy ð4:4Þ
is then discretized by repeating the following sequence of steps for each interpolation node t on Ci:
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(1) The appropriate quadrature formula x1; . . . ; xl;w1; . . . ;wl for functions of the form
Kðt; sÞruðsÞ; u ¼ 1; . . . ;n

is determined. That is, depending on the location of t relative to the curve segment Cj, either the ‘‘far” quadrature rule
or one of the diagonal quadrature rules is selected.
(2) The kernel Kðx; yÞ is evaluated at the points ðt; xrÞ for r ¼ 1; . . . ; l and the 1� l vector v with entries
v r ¼ Kðt; xrÞwr

is formed.

(3) The 1� l vector v is multiplied on the right by the l� n matrix interpolating the basis functions /1; . . . ;/n from the

interpolation nodes s1; . . . ; sn on Cj to the quadrature nodes x1; . . . ; xl.
(4) The entries fasg of the resulting 1� n vector give a single linear equation
a1rðs1Þ þ a2rðs2Þ þ � � �anrðsnÞ ¼ uðtÞ

constraining the values of the solution r at the nodes s1; . . . ; sn.

The result of repeating this procedure for each of the m interpolation nodes is an m� n linear system of the form
a11 a12 . . . a1n

a21 a22 . . . a2n

..

. ..
. . .

. ..
.

am1 am2 . . . amn

0
BBBBBBB@

1
CCCCCCCA

rðs1Þ

rðs2Þ

..

.

rðsnÞ

0
BBBBBBB@

1
CCCCCCCA
¼

uðt1Þ

uðt2Þ

..

.

uðtmÞ

0
BBBBBBB@

1
CCCCCCCA
discretizing the integral equation
Tijr ¼ u:
Repeating the above procedure for each pair of curve segments Cj and Ci, and accounting for the constant term in Eq. (4.2)
results in a discrete system of N equations in N unknowns of the form
kxþ Ax ¼ y;
where N is equal to the sum of the number of interpolation nodes nj on each curve segment Cj and A is a matrix formed by
concatenating the discrete matrices representing the Tij.

Solving the amalgamated system yields the values of the unknown function r in (4.2) at the interpolation nodes of each of
the curve segments Cj. The value of r at any point x on C can then be computed in Oð1Þ operations using the appropriate
interpolation formula. Moreover, the value of a layer potential
uðxÞ ¼
Z

C
Dðx; yÞrðyÞdy
can be computed for any x sufficiently far enough away from the curve C in OðNÞ operation using the far quadrature formulas
for the curve segments Cj; j ¼ 1; . . . ;M. For points close to the curve, an adaptive Gaussian quadrature scheme which relies on
the ability to evaluate the charge distribution at any point via interpolation can be used to compute the value of the layer
potential.
4.2. Quadratures for smooth curve segments

For a smooth curve segment C0, we can construct the appropriate quadrature and interpolation formulae in the following
manner. We start with a parameterization r : ½�1;1� ! C0 of the curve segment and take as our basis the image of the Legen-
dre polynomials of degree ðk� 1Þ on [�1,1] under the mapping r. The well-known k-point Legendre interpolation scheme
with nodes t1; . . . ; tk maps onto C0 as well; i.e., we take the jth interpolation node on C0 to be xj ¼ rðtjÞ. Finally, we use,
for each of the ðkþ 1Þ quadrature formulas, the image of the Legendre quadrature rule, which integrates exactly polynomials
of degree 2k� 1, under the mapping r.

For a proof of the convergence of the Nyström method for boundary integral equations with continuous or weakly sin-
gular kernels, see [17]. Precise error bounds are difficult to derive, but when both the unknown charge distribution r and
the kernel Kðx; yÞ are C1 – as is the case when the boundary curve is C1 – this procedure achieves very rapid convergence.
Indeed, the accuracy arising from this technique is typically limited by the approximation of the unknown function r by
piecewise polynomials and in that case the order of convergence is generally Oð1=nkÞ in the total number of discretization
points n.
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4.3. Primitive discretization of corner regions

As noted in the last subsection, the discretization of the boundary integral equation
krðyÞ þ
Z

C
Kðx; yÞrðyÞdy ¼ uðxÞ ð4:5Þ
via piecewise Gaussian quadrature formulae achieves very high rates of convergence so long as the kernel Kðx; yÞ, the solu-
tion rðyÞ, and the right-hand side u(x) are all smooth. However, on domains with corner points – like that shown in Fig. 1 –
the integral kernels Kðx; yÞ from Section 3 are singular, the right-hand sides are not smooth at the corner point, and the solu-
tions can exhibit any one of a number of different singular or discontinuous behaviors near the corner.

In the precomputation stage of the algorithm of this paper, we shall have to solve boundary integral equations on do-
mains with corners to very high precision. Standard approaches to discretizing an equation of the form (4.5) near a corner
point c0 call for a dense mesh of points near c0 (see [16,5,2] for representative examples). We adopt the terminology of [13]
and call a subdivision of the interval [�1,1] into subintervals with endpoints
1

2j
and � 1

2j
for j ¼ 0;1;2; . . . ; s;
a simply-graded mesh. The integral equation (4.5) can be discretized over a small contour C containing the corner point c0 by
first mapping [�1,1] onto an interval around the corner c0, with 0 mapping to the corner c0. Gaussian quadrature formulas
are then used to discretize the relevant integral equation over the image of each of the subintervals comprising the simply-
graded mesh on [�1,1]. Note that the resulting discretization omits a small region around the corner point and we will gen-
erally classify simply-graded meshes by this cutoff value.

Simply-graded meshes are a primitive tool and in some cases, they are not sufficient to resolve the solution of an integral
equation to double precision accuracy (at least without performing computations in extended precision arithmetic). How-
ever, a simple and effective remedy is available. If x1; . . . ; xn;w1; . . . ;wn denotes the quadrature obtained from a simply-
graded mesh on the interval [�1,1], then we let fyj;v jg denote the quadrature rule obtained via a substitution of the form
y ¼ xð2kþ1Þ, where k is a positive integer; that is,
yj ¼ xð2kþ1Þ
j and v j ¼ ð2kþ 1Þwð2kþ1Þ

j x2k
j :
The image of the quadrature rule fyj;v jg under a mapping onto the corner region can then be used in the discretization of
the integral equation (4.5). In the authors’ experience this simple modification allows for the solution of a boundary integral
equation of the form (4.5) on a domain with a corner point to full double precision using double precision arithmetic. It also
has the advantage of generally decreasing the number of discretization nodes required to obtain a desired accuracy.

5. Bases for restricted charge distributions

We now discuss the principal tool of this paper, a procedure for construction of an orthonormal basis of functions span-
ning the set of restrictions of charge distributions r satisfying a Laplace boundary integral equation
krðxÞ þ
Z

C
Kðx; yÞrðyÞdSðyÞ ¼ uðxÞ ð5:1Þ
on a contour C to a small neighborhood about a point c0 2 C. For the sake of brevity, we will restrict our attention to the
solution of the interior Dirichlet problem via a double layer representation (as discussed in Section 3.1). The other integral
equations appearing in Section 3 are treated similarly.

5.1. Bases for general curve segments

In what follows, we shall fix a simply-connected domain X in the plane whose boundary C is a compact, connected Lips-
chitz curve. Our aim is to produce a basis of functions spanning the set of restrictions of solutions r of the integral equation
Fig. 1. A domain with a single corner point.
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1
2
rðxÞ þ

Z
C

Kðx; yÞrðyÞdSðyÞ ¼ uðxÞ; ð5:2Þ
where Kðx; yÞ is the kernel
Kðx; yÞ ¼ @

@my
log x� yj j;
to a neighborhood of a point c0 2 C. We shall let B1 be the disc of radius r > 0 centered at the point c0 and we shall let B2 be
the disc of radius 2r also centered at the point c0. Moreover, we will denote by C1 the set formed from the intersection of B1

and the contour C, by C2 the intersection of C and the annulus B2 n B1, and by ıGamma3 the portion of C in the complement of
B2. Finally, we let ðr; hÞ be the usual polar coordinate system centered at the point c0 and for integers j P 0 we let Mj and Nj

denote the functions B1 	 R2 ! R given by
Mjðr; hÞ ¼ rj cosðjhÞ and Njðr; hÞ ¼ rj sinðjhÞ;
that is, Mj and Nj are the two-dimensional multipoles on the disc B1. The situation is depicted in Fig. 2.
The boundary integral equation (5.2) can be rearranged as
1
2
rðxÞ þ

Z
C1

Kðx; yÞrðyÞdSðyÞ ¼ uðxÞ �
Z

C2

Kðx; yÞrðyÞdSðyÞ �
Z

C3

Kðx; yÞrðyÞdSðyÞ: ð5:3Þ
By virtue of the separation of the contours C1 and C3, the third term on the right-hand side of Eq. (5.2) can be represented
as a multipole expansion whenever x 2 C1. So under the assumption that the right-hand side uðxÞ satisfies the Laplace equa-
tion in B2, we can introduce the approximation
uðxÞ �
Z

C3

Kðx; yÞrðyÞdSðyÞ �
XN

j¼0

ajNjðr; hÞ þ bjMjðr; hÞ; ð5:4Þ
which holds for x 2 C1.
Moreover, we make the assumption that for x 2 C1 the third term on the right-hand side of Eq. (5.3) can be approximated

as
 Z
C2

Kðx; yÞf ðyÞdSðyÞ �
XM

j¼1

Kðx; yjÞf ðyjÞwj;
where the yj lie in C2; i.e., there exists an M-point quadrature rule discretizing the integral operator T : L2ðC2Þ ! L2ðC1Þ de-
fined by
Tf ðxÞ ¼
Z

C2

Kðx; yÞf ðyÞdSðyÞ:
It follows that the restriction of r to the curve segment C1 satisfies the integral equation
�1
2
rðxÞ þ

Z
C1

Kðx; yÞrðyÞdSðyÞ ¼
XN

j¼0

ðajNjðr; hÞ þ bjMjðr; hÞÞ þ
XM

j¼1

Kðx; yjÞf ðyjÞwj: ð5:5Þ
Fig. 2. A depiction of the situation discussed in Section 5.1.
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It is now clear how to form a charge basis for C1. We observe that the restriction of (5.2) to C1 is invertible as an operator
L2ðC1Þ ! L2ðC1Þ and form the collection of functions obtained by solving the restricted integral equation for each of the func-
tions of the form
Mjðr; hÞ; Njðr; hÞ and Kðx; yjÞ
appearing in (5.5). The resulting functions are orthonormalized in order to form a charge basis.

Remark 5.1. The two assumptions made above – or obvious modifications thereof – hold for virtually all problems of
practical interest; indeed, some set of similar assumptions must hold for the integral equation (5.2) to be numerically
tractable.

Remark 5.2. The procedure presented here can be easily adapted to other boundary integral equations. For instance, in the
case of the exterior Neumann problem, the kernel Kðx; yÞ is now
Kðx; yÞ ¼ @

@mx
log jx� yj
and the proper assumption on the right-hand side uðxÞ is that it can be represented as a finite sum of the normal derivatives
of the multipoles Mj and Nj on the curve segment C1.
5.2. Universal bases for polygonal domains

For 0 < h < 2p we shall call any oriented curve which is the image under a similarity transform with positive determinant
(i.e., the image under rotation, translation, or scaling) of the curve in the plane parameterized over [�1,1] by
xðtÞ ¼ jtj cosðhÞ;
yðtÞ ¼ �t sinðhÞ;

ð5:6Þ
a wedge of angle h. Fig. 3 shows two closed curves in the plane containing wedges. Assuming counter-clockwise orientation,
the contour in Fig. 3(a) contains a wedge of angle h < p and that in Fig. 3(b) contains a wedge of angle h > p.

Because it is possible to classify all wedges by their angles, it is possible to build a set of ‘‘universal” bases for them. That
is, by applying the procedure of the preceding section to wedges of various angles, we can construct a small collection of
bases Bj with the following property:

Whenever w is the restriction to a wedge C0 	 C of a solution r of the integral equation
krðxÞ þ
Z

C
Kðx; yÞrðyÞdy ¼ uðxÞ; ð5:7Þ
where C is a compact closed Lipschitz curve in the plane and both the curve C and the right-hand side uðxÞ satisfy the (mild)
assumptions made in Section 5.1, then w is in the span of one of the bases Bj.

To see that above statement is correct, two observations are necessary. First, we note that the procedure for constructing a
basis for charge distributions can be applied to a range of angles rather than a single angle; that is, rather than inverting the
integral equation (5.7) once for a wedge of a single angle in order to form a basis for restricted charge distributions, we sam-
ple a collection h1; . . . ; hn of angles in a particular interval ½a; b� 	 ð0;2pÞ and solve the integral equation (5.7) on a wedge of
each angle hj for the appropriate right-hand sides. The resulting collection of solutions is then used to form an orthonormal
basis which will – assuming a sufficient number of angles are sampled – approximately span the space of restrictions of
charge distributions satisfying the integral equation (5.7) to a wedge of any angle in the range ½a; b�. Second, we observe that
Fig. 3. Two domains whose boundaries contain wedges.
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owing to the invariance of Laplace’s equation under scaling, rotation and translation, the obtained bases will likewise be
invariant under scaling, rotation, and translation. Thus they will span the restrictions of solutions of the appropriate integral
equation to a wedge regardless of its position or scale.

6. Numerical algorithm

We now give a detailed account of an algorithm for the construction of a set of interpolatory quadratures for the efficient
Nyström discretization of a boundary integral equation of the form
krðxÞ þ
Z

C
Kðx; yÞrðyÞdSðyÞ ¼ uðxÞ; ð6:1Þ
where Kðx; yÞ is one of the potential theoretic kernels appearing in Section 3, over arclength parameterized wedges with an-
gles h in a subinterval ½a; b� of ð0;2pÞ.

The algorithm takes as input a set of angles h1; . . . ; hr sampled from the interval ½a; b�, an even integer n specifying the
number of multipoles to use as right hand sides, and an integer l specifying the order of Legendre polynomials to use in con-
struction of the ‘‘far” quadrature formula. The output of the algorithm is a collection of interpolation and quadrature schemes
suitable for the Nyström discretization (as described in Section 4.1) of (6.1) over wedges of the specified range of angles.

Stage one: forming the spanning set.

For each of the sampled angles h the following sequence of steps are performed:

1. Discretize the boundary integral operator on the left side of Eq. (6.1) over the curve parameterized by
xðtÞ ¼ jtj cosðhÞ;
yðtÞ ¼ �t sinðhÞ;

jtj 6 2

using a quadrature obtained by taking the image of a simply-graded mesh under a substitution of the form u ¼ x2kþ1.
Denote the quadrature nodes by x1; . . . ; xq and the quadrature weights by w1; . . . ;wq.
2. Solve the resulting q� q linear system of equations for each of the multipoles
Mjðr; hÞ ¼ rj cosðjhÞ and Njðr; hÞ ¼ rj sinðjhÞ; j ¼ 0; . . . ; n=2� 1;

where ðr; hÞ is the usual polar coordinate system centered at the origin.

3. Solve the discretized system for the functions
fjðxÞ ¼ Kðx; yjÞ;

where the fyjg are a large collection of points obtained by sampling the parameterization

xðtÞ ¼ jtj cosðhÞ;
yðtÞ ¼ �t sinðhÞ;

at a large number of values of jtj > 1.

4. Restrict the set solutions so obtained to the wedge
xðtÞ ¼ jtj cosðhÞ;
ðtÞ ¼ �t sinðhÞ;

jtj 6 1

of angle h.

Denote by /1; . . . ;/N the set of restrictions of all solutions obtained by repeating this procedure for each sampled
angle h.

Stage two: construction of an orthonormal basis.

In this stage, the procedure described in Section 2.4 is utilized to form an SVD of the solutions obtained in stage one of the
algorithm. To wit, the following sequence of steps is performed:

1. Form the q� N matrix A with entries
Aij ¼ /jðqiÞ
ffiffiffiffiffiffi
wi
p

:

2. Compute the SVD of the matrix A. Denote the positive singular values of A by k1 P k2 P � � �P kk > 0 and the correspond-
ing singular vectors by v1; . . . ;vk.
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3. Form an orthonormal basis r1; . . . ;rk for the span of the /1; . . . ;/N by letting the value of rj at the quadrature node xi be
given by the ith component of the vector v j scaled by 1=

ffiffiffiffiffiffi
wi
p

. Note that given the values of a function f at the quadrature
nodes x1; . . . ; xq the value of f ðxÞ at an arbitrary point x can be computed via interpolation, so these values in fact deter-
mine the function /j.
Stage three: construction of the interpolation scheme.

By the discussion in Section 2.1, there exists a set of k points t1; . . . ; tk which can serve as nodes for a stable interpolation
scheme for the basis function r1; . . . ;rk. The following sequence of steps constitute a numerical algorithm for the computa-
tion of a set of interpolation nodes.

1. Form the matrix k� q matrix B with entries
Bij ¼ riðxjÞ
ffiffiffiffiffiffi
wj

p
:

2. Use the pivoted Gram–Schmidt algorithm with reorthogonalization to choose a set of spanning columns j1; . . . ; jk of the
matrix B. Note that by construction, the rank of the matrix B is k.

3. We shall denote by t1; . . . ; tk the k quadrature nodes xj1 ; . . . ; xjk corresponding to the k spanning columns of B.

Once the nodes t1; . . . ; tk have been computed in this fashion, we can form a matrix C which interpolates the /1; . . . ;/k to
an arbitrary set of points y1; . . . ; ym by solving the equation
CU1 ¼ U2;

where U1 is the matrix whose columns consist of the values of the basis functions /1; . . . ;/k evaluated at the interpola-
tion nodes t1; . . . ; tk and U2 is the matrix whose columns consist of the values of the basis functions at the points
y1; . . . ; ym, in a least squares sense.

Remark 6.1. Interpolation nodes chosen via the pivoted Gram–Schmidt procedure do not necessary lead to a stable
interpolation scheme. However, in practice it performs reliably (see [3] for a detailed discussion of the use of Gram–Schmidt
algorithms in numerical analysis). If difficulties do arise, then an RRQR algorithm, like that described in [12], can be
substituted for the Gram–Schmidt procedure; stability bounds can be easily derived in this case.
Stage four: construction of the ‘‘far” quadrature formula.
Since the wedges on which we solved the integral equation are discretized over the interval [�1,1], we can regard the
basis functions r1; . . . ;rk as being defined on the interval [�1,1]. In this stage, the procedure of [4] is used to construct either
a generalized Chebyshev or generalized Gaussian quadrature formula for integrals of the form
Z 1

�1
PðyÞrjðyÞdSðyÞ;
where the PðyÞ is a function on [�1,1] whose restrictions to the subintervals [�1,0) and (0,1] are Legendre polynomials of
degree l (i.e., PðyÞ is a piecewise Legendre polynomial). Since the kernel Kðx; yÞ is smooth when the point x 2 R2 is removed
from y 2 R2 – and therefore can be approximated by polynomials – this quadrature serves as the ‘‘far” quadrature formula
required by the Nyström method described in Section 4.1.

Stage five: construction of the ‘‘diagonal” quadrature formulae.

Just as we regarded the basis functions as being given on the interval [�1,1], we can regard the kernel function Khðx; yÞ for
the wedge of angle h as being given on ½�1;1� � ½�1;1�. In this stage, for each of the k interpolation nodes t, the procedure of
[4] is used to construct either a generalized Chebyshev or generalized Gaussian procedure for all integrals of the form
Z 1

�1
Khi
ðt; yÞrjðyÞdy;
where hi varies over the set of sampled angles h1; . . . ; hr and rj varies over the basis functions r1; . . . ;rk. The k resulting quad-
rature rules are, of course, the ‘‘diagonal” quadrature formulae required by the Nyström method described in Section 4.1.

7. Numerical results

We now present the results of a number of numerical experiments. All code was written in Fortran 77 and compiled with
the Lahey/Fujitsu Linux64 Fortran Compiler Release 8.10a. Timings were performed on a PC with an Intel Core i7 2.67 GHz
processor and 12 GB of memory. No attempt was made to parallelize any of the code.
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An algorithm for the construction of generalized Chebyshev and Gaussian quadratures for very general classes of func-
tions was implemented. The procedure of Section 6 was implemented by coupling that code with a simple direct solver
for boundary integral equations which is asymptotically Oðn2Þ in the number of discretization nodes n.

For each of the boundary integral formulations discussed in Section 3, a collection of universal quadrature formulas for
polygonal domains was constructed. More specifically, the interval ð0;2pÞ was partitioned into 80 equispaced subintervals
and for each such subinterval ½h1; h2� a set of interpolatory quadrature formula for wedges with angles between h1 and h2 was
constructed using the algorithm of Section 6. On each interval ½h1; h2�, eight angles were sampled and the far quadrature for-
mulae were constructed for piecewise Legendre polynomials of order 20. In all cases, we opted to construct generalized
Chebyshev rather than generalized Gaussian quadrature formulae in order to maintain simplicity. Table 1 shows the results
for selected quadrature formulae.

7.1. A domain with a single corner point

Fig. 4 shows a simply-connected domain X1 whose boundary @X1 is C1 except for a single corner point of angle p=4 radi-
ans. In this experiment, we solve the interior Neumann boundary value problem
Table 1
The num

Int. D

Ext.

Ext.

Int. N
DuðxÞ ¼ 0 for x 2 X1;

lim
x!p
x2X1

@u
@mx
ðxÞ ¼ f ðpÞ for p 2 @X1;

ð7:1Þ
where f ðpÞ is the normal derivative on @X1 of a potential function vðxÞ generated by 5 point charges randomly placed in the
exterior of the domain X1, via the technique outlined in Section 3 – namely by inverting integral equation
�1
2
rðpÞ þ 1

2p

Z
@X1

rðyÞ @
@mp

log jp� yjdSðyÞ � rðp�Þ ¼ f ðpÞ ð7:2Þ
in order to obtain a solution u of (7.1) in the form of a single layer potential
uðxÞ ¼ 1
2p

Z
@X1

log jx� yjrðyÞdSðyÞ: ð7:3Þ
Note that p� in (7.2) denotes an arbitrary point on the boundary curve; see Section 3.
Table 2 compares the results obtained by discretizing the integral equation (7.2) using a wedge quadrature formula with

those obtained using the discretizations described in Section 4.3. In both cases, the smooth portion of the curve were
ber of interpolation and quadrature nodes for selected polygonal quadrature formulae.

Range of angles (radians) Interpolation nodes Far quadrature nodes Largest diagonal quadrature

ir. 0.706–0.785 28 78 27
1.492–1.571 28 78 24
2.228–2.356 28 76 22

Dir. 0.706–0.785 26 76 42
1.492–1.571 27 76 40
2.228–2.356 27 74 39

Neu. 0.706–0.785 35 90 29
1.492–1.571 36 92 28
2.228–2.356 36 93 29

eu. 0.706–0.785 36 97 52
1.492–1.571 30 86 44
2.228–2.356 32 88 45

Fig. 4. The domain X1 with a single corner of angle p=4.
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discretized using 180 piecewise Legendre interpolation nodes. The discrete systems were inverted using a simple direct sol-
ver for boundary integral equations which has asymptotic running time Oðn2Þ in the number of discretization nodes n.


 N is the total number of interpolation nodes used to discretize the integral equation (7.2);

 Tsolve is the time required to invert the discrete linear system in seconds;

 Eabs is the largest absolute error observed while measuring the difference between the computed solution ~uðxÞ and the true

potential function uðxÞ at a collection of 100 randomly placed points in the interior of the domain X1; and

 Ecirc is an approximation (obtained with a high order Gaussian quadrature) of the relative L2ðCÞ error ku� vk2=kuk2, where

C is a circle of small radius located at the center of mass of @X1.
Remark 7.1. The boundary integral formulation (7.2) used here to solve the interior Neumann problem is not necessary an
optimal approach for domains with corners. There are many possible ways to modify a boundary integral formulation in
order to reduce the complexity of such a problem; however, a notable advantage of the algorithm of this paper is that
efficient quadratures can be obtained even using suboptimal boundary integral formulations. The precomputations can be
performed, leisurely, in extended precision if need be and the resulting quadratures produce highly efficient and accurate
formulas, regardless of the underlying integral equation.
7.2. Two polygonal domains

In this subsection, we present results pertaining to the two polygonal domains shown in Fig. 5. The domain X2 (pictured
on the left) has 10 corner points of various angles, while the domain X3 (pictured on the right) has 38 corner points.

For each of the Laplace boundary value problems discussed in Section 3, the corresponding integral equation, which has
the form
Table 2
Compar

Univ

Simp
krðxÞ þ
Z

C
Kðx; yÞrðyÞdy ¼ uðxÞ
was formed and discretized; the appropriate precomputed quadrature formula was used at each corner point and piece-
wise Legendre quadratures were used to discretize the smooth portions of the curve. The right-hand side uðxÞ was taken
to be the restriction to the boundary of the domain of either a potential generated by a collection of five charges placed
randomly either in the interior or exterior of the domain (depending on the boundary value problem under consider-
ation), or the normal derivative of such a potential function on the boundary of the domain. The discrete systems were
inverted using a simple direct solver (with asymptotic complexity Oðn2Þ in the number of discretization nodes n). Fig. 6
shows the dipole charge distribution on X3 obtained in the solution of the interior Dirichlet problem. Table 3 presents the
results for the polygonal domain X2 and Table 4 for the domain X3; the notation used is the same as that of the preceding
section.
Fig. 5. The polygonal domains under consideration in Section 7.2.

ative performance of the universal quadrature formulas in solving an interior Neumann problem on the domain X1.

N Tsolve Eabs Ecirc

ersal quadrature 216 0.006 3:12� 10�14 8:82� 10�15

ly-graded mesh 520 0.081 4:07� 10�06 2:30� 10�07

800 0.275 1:52� 10�10 8:58� 10�11

1440 1.713 8:82� 10�12 2:76� 10�12
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Fig. 6. The continuous, but not smooth, dipole distribution on @X3 resulting from the solution of the interior Dirichlet problem.

Table 3
Computational results obtained for the polygonal domain X2.

N TSolve Etabs Ecirc

Interior Dirichlet 847 0.364 4:48� 10�15 1:17� 10�14

Exterior Dirichlet 840 0.327 7:08� 10�15 3:01� 10�14

Exterior Neumann 926 0.437 5:50� 10�15 2:74� 10�14

Interior Neumann 900 0.391 3:71� 10�15 2:98� 10�14

Table 4
Computational results obtained for the polygonal domain X3.

N TSolve Eabs Ecirc

Interior Dirichlet 2202 1.78 1:48� 10�14 4:22� 10�15

Exterior Dirichlet 2197 1.77 2:23� 10�14 3:41� 10�13

Exterior Neumann 2484 2.42 2:95� 10�14 2:31� 10�13

Interior Neumann 2821 2.92 1:08� 10�14 6:22� 10�15
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7.3. A polygonal domain with 250 vertices

In this example, we solve the exterior Neumann problem
DuðxÞ ¼ 0 for x 2 Xc
4;

lim
x!p
x2Xc

4

@u
@mx
ðxÞ ¼ f ðpÞ for p 2 @X4

ð7:4Þ
on the polygonal domain X4 shown in Fig. 7. The boundary of the domain X4 was obtained by sampling the smooth closed
curve defined by the polar equation
Fig. 7. The polygonal domain X4, which was obtained by sampling a smooth curve at 250 points.



J. Bremer, V. Rokhlin / Journal of Computational Physics 229 (2010) 2507–2525 2523
rðhÞ ¼ 1þ 1
2

cosðnhÞ sinðmhÞ;
where n ¼ 4 and m ¼ 4, at 250 points. More specifically, the coordinates ðxj; yjÞ of the vertices of the polygon @X4 are given by
xj ¼ 1þ 1
2

cosðnhjÞ sinðmhjÞ
� �

cosðhjÞ;

yj ¼ 1þ 1
2

cosðnhjÞ sinðmhjÞ
� �

sinðhjÞ;
where hj ¼ 2pj=250; j ¼ 1;2; . . . ;250.
The boundary data f ðpÞwas taken to be the normal derivative on @X4 of a potential function vðxÞ generated by a collection

of 10 point charges randomly placed in the interior of the domain X4. The boundary integral equation
1
2
rðpÞ þ 1

2p

Z
@X4

@

@mx
log jp� yjrðyÞdSðyÞ ¼ f ðpÞ ð7:5Þ
corresponding to the problem (7.4) was discretized as before; a total of 16,341 discretization nodes were required. The
resulting discrete system was inverted in 61.0 s using a direct solver which is asymptotically Oðn2Þ in the number of discret-
ization nodes n.

The true potential function vðxÞ was compared to the single layer potential
uðxÞ ¼ 1
2p

Z
@X4

log jx� yjrðyÞdSðyÞ ð7:6Þ
arising from the charge distribution r obtained by inverting (7.5) at 100 randomly chosen points in the exterior of X4. The
largest absolute error was found to be 2:23� 10�14.
7.4. A nonpolygonal domain

In this final example, we turn our attention to the nonpolygonal domain X5 with six corner points shown in Fig. 8. Unlike
the domains in previous examples, the boundary curve @X5 has nonzero curvature near corner points. This means that the
wedge quadrature formulas described in Section 7.1 are not applicable. Instead, specialized quadratures were constructed for
each of the corner points.

Once again, as in the previous subsection, an instance of each of the boundary value problems discussed in Section 3 was
solved on X4. In particular, for each such Laplace boundary value problem, the corresponding integral equation, which has
the form
krðxÞ þ
Z

C
Kðx; yÞrðyÞdy ¼ uðxÞ
was formed and discretized using the appropriate quadratures. The right hand sides uðxÞ were once again taken to be the
restriction to the boundary of the domain of either a potential generated by a collection of five charges placed randomly
either in the interior or exterior of the domain (depending on the boundary value problem under consideration), or the nor-
mal derivative of such a potential function. The discrete systems were inverted using a simple direct solver (with asymptotic
complexity Oðn2Þ in the number of discretization nodes n). Table 5 presents the results for the domain X5; the notation is the
same as that of Section 7.1.
Fig. 8. The nonpolygonal domain X5 under consideration in Section 7.4.



Table 5
Computational results obtained for the nonpolygonal domain X5.

N TSolve Eabs Ecirc

Interior Dirichlet 469 0.065 6:00� 10�13 1:74� 10�13

Exterior Dirichlet 448 0.067 3:98� 10�13 1:24� 10�13

Exterior Neumann 512 0.072 7:88� 10�13 2:03� 10�13

Interior Neumann 522 0.080 5:21� 10�13 9:23� 10�13
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8. Conclusions and future work

To summarize, in this paper, a method for the construction of quadrature formulae suitable for the Nyström discretization
of Laplace boundary integral equations over more-or-less arbitrary two-dimensional curve segments was introduced. That
scheme was then used to generate collections of quadrature formulae for the efficient discretization of certain Laplace
boundary integral equations on polygonal domains. We close this paper by mentioning the following obvious applications
and generalizations of the procedure of this paper:


 The generalization of the algorithm of Section 6 to boundary integral equations in three dimensions – that is, to equations
of the form
krðxÞ þ
Z

R
Kðx; yÞrðyÞdSðyÞ ¼ uðxÞ; ð8:1Þ

where R is a surface in R3 rather than a curve in R2 – is extremely straightforward. In particular, integral equations of this
type can be discretized using generalizations of Gaussian polynomials for triangles. Given a small surface R0 contained in
R discretized using a large number of quadrature nodes, the integral equation (8.1) can be discretized and solved for
right-hand sides consisting of the terms of a three dimensional multipole expansion on R0 in order to form a local basis
for charge distributions on the surface R0. Efficient quadratures can then be constructed in essentially the same manner
as described in Section 6.


 The approach detailed here for Laplace’s equation can be readily adapted to the case of boundary value problems for the
Helmholtz equation
Duþx2u ¼ 0

assuming x is not too large. Because the integral kernels for boundary integral equations arising from the Helmholtz
equation are weakly singular instead of continuous, additional care must be taken in discretizing the integral equations.
Moreover, the lack of scale invariance in the Helmholtz equation makes the construction of universal quadratures slightly
more difficult. Otherwise, however, the algorithm for the Helmholtz case is analogous to that described here with the role
of the multipoles now played by the terms of the J-expansionX

k

JkðxrÞðak sinðkhÞ þ bk cosðkhÞÞ;

where Jk is the Bessel function of the first kind of order k.

 The algorithm presented here for the construction of universal quadrature rules for polygonal domains can be extended to

any setting for which the pathological behavior of the domains can be classified efficiently. In particular, we expect to be
able to extend the construction to much more general classes of domains with corner points.


 Similarly, in many engineering applications it is convenient to approximate boundary curves via C2 splines. The discret-
ization of a boundary integral equation
krðxÞ þ
Z

C
Kðx; yÞrðyÞdSðyÞ ¼ uðxÞ ð8:2Þ

over such a contour is, however, problematic – the lack of smoothness of spline functions severely limits the order of con-
vergence of discrete approximations of (8.2). But, by classifying the behavior of C2 spline functions near singular points, it
should be possible to construct a collection of quadrature formulae for domains bounded by splines analogous to those
constructed here for polygonal domains.


 The quadrature construction algorithm can be used as a local solver for boundary integral equations, allowing for a divide-
and-conquer approach to the solution of boundary integral equations on extremely complicated domains. This can be, for
instance, exploited to solve problems on domains which are sufficiently complicated that the resulting discrete systems
might not otherwise fit in memory.


 Finally, we reiterate that the numerical experiments of Section 7 were conducted using a direct solver for boundary inte-
gral equations which is asymptotically Oðn2Þ in the number of discretization nodes n. Coupling the approach of this paper
with a faster technique for the inversion of boundary integral equations (for instance, with the OðnÞ fast direct solver of
[19]) will allow for the solution of boundary integral equations on tremendously complicated domains.



J. Bremer, V. Rokhlin / Journal of Computational Physics 229 (2010) 2507–2525 2525
Acknowledgments

The first author was supported by the Office of Naval Research under Contract N00014-09-1-0318. The second author was
supported in part by the ONR under Contract N0014-07-1-0711, in part by the AFOSR under Contract FA9550-09 -1-0241,
and in part by DARPA-AFOSR Contract FA9550-07-1-0541.

References

[1] K. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, 1997.
[2] K.E. Atkinson, I. Graham, Iterative variants of the Nyström method for second kind boundary integral operators, SIAM J. Sci. Stat. Comput. 13 (1990)

694–722.
[3] A. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
[4] J. Bremer, Z. Gimbutas, V. Rokhlin, A nonlinear optimization procedure for generalized Gaussian quadratures, Yale University, Department of Computer

Science, Tech Report TR1406, 2008.
[5] G. Chandler, Galkerin’s method for boundary integral equations on polygonal domains, J. Austral. Math. Soc., Ser. B 26 (1984) 1–13.
[6] H. Cheng, V. Rokhlin, N. Yarvin, Nonlinear optimization, quadrature, and interpolation, SIAM J. Optim. 9 (1999) 901–923.
[7] R. Coifman, Y. Meyer, Wavelets: Calderon–Zygmund and Multilinear Operators, Cambridge University Press, 1997.
[8] E. Fabes, M. Jodeit, N. Riviére, Potential theoretic techniques for boundary value problems on C1 domains, Acta Math. 141 (1978) 165–186.
[9] G. Folland, Introduction to Partial Differential Equations, Princeton University Press, Princeton, NJ, 1976.

[10] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985.
[11] P. Grisvard, Singularities in Boundary Value Problems, Springer-Verlag, 1992.
[12] M. Gu, S. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR factorization, SIAM J. Sci. Comput. 17 (1996) 848–869.
[13] J. Helsing, R. Ojala, Corner singularities for elliptic problems: integral equations, graded meshes, quadrature, and compressed inverse preconditioning,

J. Comput. Phys. 227 (2008) 8820–8840.
[14] O. Kellog, Foundations of Potential Theory, Dover, New York, 1953.
[15] C. Kenig, Elliptic boundary value problems on Lipschitz domains, Beijing Lectures in Harmonic Analysis, Ann. Math. Stud. 112 (1986) 131–183.
[16] R. Kress, A Nyström method for boundry integral equations in domains with corners, Numer. Math. 58 (1991).
[17] R. Kress, Integral Equations, Springer-Verlag, New York, 1999.
[18] J. Ma, V. Rokhlin, S. Wandzura, Generalized Gaussian quadrature rules for systems of arbitrary functions, SIAM J. Numer. Anal. 33 (1996) 971–996.
[19] P. Martinsson, V. Rokhlin, A fast direct solver for boundary integral equations in two dimensions, J. Comput. Phys. 205 (2006).
[20] P.-G. Martinsson, V. Rokhlin, M. Tygert, On interpolation and integration in finite-dimensional spaces of bounded functions, Commun. Appl. Math.

Comput. Sci. 1 (2006) 133–142.
[21] S. Mikhlin, Integral Equations, Pergamon Press, New York, 1957.
[22] G. Verchota, Layer potentials and boundary value problems for Laplace’s equation in Lipschitz domains, J. Funct. Anal. 59 (1984) 572–611.
[23] N. Yarvin, V. Rokhlin, Generalized Gaussian quadratures and singular value decompositions of integral operators, SIAM J. Sci. Comput. 20 (1998) 699–

718.


	Efficient discretization of Laplace boundary integral equations on polygonal domains
	Introduction
	Preliminaries
	Interpolation on spaces of bounded functions
	Generalized Chebyshev quadratures
	Generalized Gaussian quadratures
	Compression of sequences of functions

	Boundary integral formulations
	Boundary integral equations on smooth domains
	Boundary integral equations on Lipschitz domains

	Discretization of integral equations
	The Nyström method
	Quadratures for smooth curve segments
	Primitive discretization of corner regions

	Bases for restricted charge distributions
	Bases for general curve segments
	Universal bases for polygonal domains

	Numerical algorithm
	Numerical results
	A domain with a single corner point
	Two polygonal domains
	A polygonal domain with 250 vertices
	A nonpolygonal domain

	Conclusions and future work
	Acknowledgments
	References


